
Universal Meshes for computing with
non-conforming tetrahedralization

Hardik Kabaria and Adrian J. Lew

Department of Mechanical Engineering, Stanford University, CA 94305.
hardikk@stanford.edu

1 Introduction

We describe a method for discretizing C2 continuous surface(s) in R3 im-
mersed in a non-conforming tetrahedralization. The method consists of con-
structing a homeomorphic mapping from the tetrahedrons in a background
mesh to ones conforming to the immersed geometry. Such a map relies on the
way we parametrize the surface(s) of the immersed geometry over a collection
of a nearby triangular faces with their closest point projections. In order to
guarantee existence of such a parametrization of a surface, we need to im-
pose restrictions on the background mesh. These restrictions define a family
of surfaces that can be parametrized with a given background mesh.

1.1 Universal Meshes

We say that the background mesh is a universal mesh for such a family of
surfaces. The notion of universal meshes is particularly useful in large de-
formation problems and in numerical schemes that require iterating over the
geometry of domains. The same background mesh can serve as the universal
mesh for the evolving domains. With no conformity requirements, the uni-
versal mesh can be adopted to triangulate large family of domains immersed
in it, including ones realized over several updates during the course of sim-
ulating problems with moving boundaries. Hence it facilitates a framework
for finite element calculations over evolving domains while using a fixed back-
ground mesh. Rangarajan and Lew [1] have proposed universal meshes to
achieve conforming mesh for 2D curved domain immersed in non-conforming
background triangulation.

2 Background mesh to conforming meshes

Consider a C2 continuous curved domain Ω that is an open set in R3 and is
immersed in a background tetrahedralization Th. By Ω being immersed in Th
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we mean that the tetrahedralization Th contains Ω. Note that Th is a valid
tetrahedralization if

• each tetrahedron in Th is a non-empty set.
• if T1 and T2 are distinct tetrahedrons in Th, then T 1 ∩ T 2 is either empty,

a common face, a common edge or a common vertex.

We take Γ := ∂Ω with an orientation specified as follows.

s(x) :=

{
−1 if x ∈ Ω;
+1 otherwise.

(1)

The closest point projection onto Γ , π : R3 → Γ , is defined as follows,

π(x) := argmin
y∈Γ

d(x, y) (2)

here d(·, ·) is the Euclidean distance in R3. Based on these definitions we
can define the signed distance to Γ , φ : R3 → R as φ(x) := s(·) × d(·, Γ ).
Here d(·, Γ ) = miny∈Γ d(·, y). At this point we assume no conformity between
Th and Γ , to be precise no vertex of Th needs to lie on Γ . We will define
the mapping in the following subsections that would yield a triangulation T ch
conforming to Γ by perturbing few vertices of Th in the vicinity of Γ .

Positively cut tetrahedrons and positive faces

In order to describe how to perturb the vertices in the background mesh or
tetrahedrons Th, we introduce the terminology of the positively cut tetrahe-
drons by Γ . We say that a tetrahedron in Th is positively cut by Γ if s = +1
at three of the four vertices of the tetrahedron and s = −1 at one vertex.
We call the face shared by the vertices having s = +1 in the positively cut
tetrahedron, a positive face with respect to Γ . The union of positive faces in
Th is denoted by Γh and the union of positive vertices is denoted by VΓh .

2.1 Meshing Algorithm

The meshing algorithm consists of transforming Γh to T ch and is summarized
as the mapping Mh defined over the vertices in Γh as follows.

Mh(x) = x− φ(x)n(π(x)) (3)

Here n is the unit outward normal to Γ . It is clear from equation 3 that Mh

perturbs the vertices by the signed distance φ(x) along the direction of the
normal to Γ . Hence the action of Mh on the vertices in Γh will be as follows,

Mh(x) = x− φ(x)n(π(x)) = π(x) (4)

The equality holds when x is close to Γ as well as Γ is sufficiently smooth.
Hence the vertices in Γh are mapped to their closest point projection on Γ .
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φ(A), φ(B), φ(C) > 0 and φ(D) < 0. φ(A) = 0, φ(B), φ(C) > 0 and φ(D) < 0.

Fig. 1: Examples to illustrate the definition of a tetrahedron positively cut by Γ and
its positive face. In both the cases ABC is the positive face. Note that as shown
in 1b it is not necessary that all the points on the positive face (x ∈ ABC) satisfy,
φ(x) 6≥ 0 for a tetrahedron to be positively cut by Γ .

Fig. 2: The figure on the left shows a positively tetrahedron by Γ . We identify
positive face and perturb corresponding positive vertices based upon the mapping
Mh.

3 Examples

We showcase examples of achieve conforming surface triangulation T hc given a
smooth surface Γ . We follow the method described in section 2. Here we have
shown examples with surfaces made of bicubic B-spine patch as a building
block or a surface given in terms of an implicit equation.

4 Future Direction

We intend to thoroughly explore and understand the restrictions required to
be imposed on the background tetrahedralization Th in order to guarantee
the construction of a homeomorphic mapping Mh to achieve a conforming
surface triangulation T hc . We plan to pursue this problem in the similar man-
ner as done by Rangaranjan and Lew [2] for universal meshes in 2D with
non-conforming triangulations. We also plan to explore the moving boundary
problems in 3D based on the scheme proposed by Gawlik and Lew [3].
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Th Γh T h
c

Fig. 3: Fig. 3a shows the torus immersed in the background mesh Th. Fig. 3b shows
the union of positive faces, Γh, in orange wireframe. Fig. 3c shows the conforming
triangular mesh T h

c for the surface given as a zero level set of a function after
applying Mh to Γh.

Fig. 4: Figures 4a and 4b shows that all configurations of the moving surface are
immersed in the universal mesh. Figures 4c and 4d shows the conforming surface
triangulation generated from the universal mesh.

Fig. 5: We show the conforming surface triangulations of various configurations of a
coffee cup as it transforms in to a doughnut. All the conforming surface triangulation
are generated using the same background mesh Th as a universal mesh.
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Data: Surface Γ , tetrahedralization Th.
Result: Conforming triangulation T h

c .
Identify positive faces
Γh ← ∅;
for all tetrahedrons T ∈ Th do
{va, vb, vc, vd} ← vertices of T ordered such that
s(va) ≤ s(vb) ≤ s(vc) ≤ s(vd).;
if s(vb) = s(vc) = s(vd) = 1 and s(va) = −1 then

Append the face K of T shared by {vb, vc, vd} to Γh.;
end

end
Perturb vertices in Γh

for all faces K ∈ Γh do
Compute π for {va, vb, vc} ← vertices of K.
Perturb them based on Mh({va, vb, vc}) ∈ T h

c .
end

Algorithm 1: Achieving conforming triangulation for C2 regular surface.

Fig. 6: We have immersed the spherical tank as well as the propeller in the back-
ground tetrahedralization Th. Figures 6b and 6c shows the conforming surface tri-
angulations of various configurations of the propeller as it rotates inside the tank.
We can generate conforming surface triangulation for all possible configurations by
using the same background mesh Th as a universal mesh.
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